README
Fabric
Fabric is a React component library built on Storybook.
Table of Contents
- Updating to New Releases
- Folder Structure
- Available Scripts
- Supported Browsers
- Supported Language Features and Polyfills
- Displaying Lint Output in the Editor
- Installing a Dependency
- Importing a Component
- Code Splitting
- Adding a Stylesheet
- Post-Processing CSS
- Adding a CSS Preprocessor (Sass, Less etc.)
- Adding Images, Fonts, and Files
- Running Tests
- Debugging Tests
- Developing Components in Isolation
- Publishing Components to npm
- Deployment
- Advanced Configuration
Updating to New Releases
_ UPDATE THIS _
Folder Structure
_ UPDATE THIS _
my-app/
README.md
node_modules/
package.json
public/
index.html
favicon.ico
src/
App.css
App.js
App.test.js
index.css
index.js
logo.svg
Available Scripts
_ UPDATE THIS _
In the project directory, you can run:
npm start
Runs the app in the development mode.
Open http://localhost:3000 to view it in the browser.
The page will reload if you make edits.
You will also see any lint errors in the console.
npm test
Launches the test runner in the interactive watch mode.
See the section about running tests for more information.
npm run build
Builds the app for production to the build
folder.
It correctly bundles React in production mode and optimizes the build for the best performance.
The build is minified and the filenames include the hashes.
Your app is ready to be deployed!
See the section about deployment for more information.
Supported Browsers
_ UPDATE THIS _
By default, the generated project uses the latest version of React.
You can refer to the React documentation for more information about supported browsers.
Supported Language Features and Polyfills
_ UPDATE THIS _
This project supports a superset of the latest JavaScript standard.
In addition to ES6 syntax features, it also supports:
- Exponentiation Operator (ES2016).
- Async/await (ES2017).
- Object Rest/Spread Properties (stage 3 proposal).
- Dynamic import() (stage 3 proposal)
- Class Fields and Static Properties (part of stage 3 proposal).
- JSX and Flow syntax.
Learn more about different proposal stages.
While we recommend using experimental proposals with some caution, Facebook heavily uses these features in the product code, so we intend to provide codemods if any of these proposals change in the future.
Note that the project only includes a few ES6 polyfills:
Object.assign()
viaobject-assign
.Promise
viapromise
.fetch()
viawhatwg-fetch
.
If you use any other ES6+ features that need runtime support (such as Array.from()
or Symbol
), make sure you are including the appropriate polyfills manually, or that the browsers you are targeting already support them.
Also note that using some newer syntax features like for...of
or [...nonArrayValue]
causes Babel to emit code that depends on ES6 runtime features and might not work without a polyfill. When in doubt, use Babel REPL to see what any specific syntax compiles down to.
Displaying Lint Output in the Editor
_ UPDATE THIS _
Note: this feature is available with
react-scripts@0.2.0
and higher.
It also only works with npm 3 or higher.
Some editors, including Sublime Text, Atom, and Visual Studio Code, provide plugins for ESLint.
They are not required for linting. You should see the linter output right in your terminal as well as the browser console. However, if you prefer the lint results to appear right in your editor, there are some extra steps you can do.
You would need to install an ESLint plugin for your editor first. Then, add a file called .eslintrc
to the project root:
{
"extends": "react-app"
}
Now your editor should report the linting warnings.
Note that even if you edit your .eslintrc
file further, these changes will only affect the editor integration. They won’t affect the terminal and in-browser lint output. This is because Create React App intentionally provides a minimal set of rules that find common mistakes.
If you want to enforce a coding style for your project, consider using Prettier instead of ESLint style rules.
Installing a Dependency
The generated project includes React and ReactDOM as dependencies. It also includes a set of scripts used by Create React App as a development dependency. You may install other dependencies (for example, React Router) with npm
:
npm install --save react-router
Alternatively you may use yarn
:
yarn add react-router
This works for any library, not just react-router
.
Importing a Component
_ UPDATE THIS _
This project setup supports ES6 modules thanks to Babel.
While you can still use require()
and module.exports
, we encourage you to use import
and export
instead.
For example:
Button.js
import React, { Component } from 'react';
class Button extends Component {
render() {
// ...
}
}
export default Button; // Don’t forget to use export default!
DangerButton.js
import React, { Component } from 'react';
import Button from './Button'; // Import a component from another file
class DangerButton extends Component {
render() {
return <Button color="red" />;
}
}
export default DangerButton;
Be aware of the difference between default and named exports. It is a common source of mistakes.
We suggest that you stick to using default imports and exports when a module only exports a single thing (for example, a component). That’s what you get when you use export default Button
and import Button from './Button'
.
Named exports are useful for utility modules that export several functions. A module may have at most one default export and as many named exports as you like.
Learn more about ES6 modules:
Code Splitting
_ UPDATE THIS _
Instead of downloading the entire app before users can use it, code splitting allows you to split your code into small chunks which you can then load on demand.
This project setup supports code splitting via dynamic import()
. Its proposal is in stage 3. The import()
function-like form takes the module name as an argument and returns a Promise
which always resolves to the namespace object of the module.
Here is an example:
moduleA.js
const moduleA = 'Hello';
export { moduleA };
App.js
import React, { Component } from 'react';
class App extends Component {
handleClick = () => {
import('./moduleA')
.then(({ moduleA }) => {
// Use moduleA
})
.catch(err => {
// Handle failure
});
};
render() {
return (
<div>
<button onClick={this.handleClick}>Load</button>
</div>
);
}
}
export default App;
This will make moduleA.js
and all its unique dependencies as a separate chunk that only loads after the user clicks the 'Load' button.
You can also use it with async
/ await
syntax if you prefer it.
With React Router
If you are using React Router check out this tutorial on how to use code splitting with it. You can find the companion GitHub repository here.
Also check out the Code Splitting section in React documentation.
Adding a Stylesheet
_ UPDATE THIS _
This project setup uses Webpack for handling all assets. Webpack offers a custom way of “extending” the concept of import
beyond JavaScript. To express that a JavaScript file depends on a CSS file, you need to import the CSS from the JavaScript file:
Button.css
.Button {
padding: 20px;
}
Button.js
import React, { Component } from 'react';
import './Button.css'; // Tell Webpack that Button.js uses these styles
class Button extends Component {
render() {
// You can use them as regular CSS styles
return <div className="Button" />;
}
}
This is not required for React but many people find this feature convenient. You can read about the benefits of this approach here. However you should be aware that this makes your code less portable to other build tools and environments than Webpack.
In development, expressing dependencies this way allows your styles to be reloaded on the fly as you edit them. In production, all CSS files will be concatenated into a single minified .css
file in the build output.
If you are concerned about using Webpack-specific semantics, you can put all your CSS right into src/index.css
. It would still be imported from src/index.js
, but you could always remove that import if you later migrate to a different build tool.
Post-Processing CSS
_ UPDATE THIS _
This project setup minifies your CSS and adds vendor prefixes to it automatically through Autoprefixer so you don’t need to worry about it.
For example, this:
.App {
display: flex;
flex-direction: row;
align-items: center;
}
becomes this:
.App {
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-webkit-box-orient: horizontal;
-webkit-box-direction: normal;
-ms-flex-direction: row;
flex-direction: row;
-webkit-box-align: center;
-ms-flex-align: center;
align-items: center;
}
If you need to disable autoprefixing for some reason, follow this section.
Adding a CSS Preprocessor (Sass, Less etc.)
_ UPDATE THIS _
Generally, we recommend that you don’t reuse the same CSS classes across different components. For example, instead of using a .Button
CSS class in <AcceptButton>
and <RejectButton>
components, we recommend creating a <Button>
component with its own .Button
styles, that both <AcceptButton>
and <RejectButton>
can render (but not inherit).
Following this rule often makes CSS preprocessors less useful, as features like mixins and nesting are replaced by component composition. You can, however, integrate a CSS preprocessor if you find it valuable. In this walkthrough, we will be using Sass, but you can also use Less, or another alternative.
First, let’s install the command-line interface for Sass:
npm install --save node-sass-chokidar
Alternatively you may use yarn
:
yarn add node-sass-chokidar
Then in package.json
, add the following lines to scripts
:
"scripts": {
+ "build-css": "node-sass-chokidar src/ -o src/",
+ "watch-css": "npm run build-css && node-sass-chokidar src/ -o src/ --watch --recursive",
"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test --env=jsdom",
Note: To use a different preprocessor, replace
build-css
andwatch-css
commands according to your preprocessor’s documentation.
Now you can rename src/App.css
to src/App.scss
and run npm run watch-css
. The watcher will find every Sass file in src
subdirectories, and create a corresponding CSS file next to it, in our case overwriting src/App.css
. Since src/App.js
still imports src/App.css
, the styles become a part of your application. You can now edit src/App.scss
, and src/App.css
will be regenerated.
To share variables between Sass files, you can use Sass imports. For example, src/App.scss
and other component style files could include @import "./shared.scss";
with variable definitions.
To enable importing files without using relative paths, you can add the --include-path
option to the command in package.json
.
"build-css": "node-sass-chokidar --include-path ./src --include-path ./node_modules src/ -o src/",
"watch-css": "npm run build-css && node-sass-chokidar --include-path ./src --include-path ./node_modules src/ -o src/ --watch --recursive",
This will allow you to do imports like
@import 'styles/_colors.scss'; // assuming a styles directory under src/
@import 'nprogress/nprogress'; // importing a css file from the nprogress node module
At this point you might want to remove all CSS files from the source control, and add src/**/*.css
to your .gitignore
file. It is generally a good practice to keep the build products outside of the source control.
As a final step, you may find it convenient to run watch-css
automatically with npm start
, and run build-css
as a part of npm run build
. You can use the &&
operator to execute two scripts sequentially. However, there is no cross-platform way to run two scripts in parallel, so we will install a package for this:
npm install --save npm-run-all
Alternatively you may use yarn
:
yarn add npm-run-all
Then we can change start
and build
scripts to include the CSS preprocessor commands:
"scripts": {
"build-css": "node-sass-chokidar src/ -o src/",
"watch-css": "npm run build-css && node-sass-chokidar src/ -o src/ --watch --recursive",
- "start": "react-scripts start",
- "build": "react-scripts build",
+ "start-js": "react-scripts start",
+ "start": "npm-run-all -p watch-css start-js",
+ "build-js": "react-scripts build",
+ "build": "npm-run-all build-css build-js",
"test": "react-scripts test --env=jsdom",
"eject": "react-scripts eject"
}
Now running npm start
and npm run build
also builds Sass files.
Why node-sass-chokidar
?
node-sass
has been reported as having the following issues:
node-sass --watch
has been reported to have performance issues in certain conditions when used in a virtual machine or with docker.Infinite styles compiling #1939
node-sass
has been reported as having issues with detecting new files in a directory #1891
node-sass-chokidar
is used here as it addresses these issues.
Adding Images, Fonts, and Files
_ UPDATE THIS _
With Webpack, using static assets like images and fonts works similarly to CSS.
You can import
a file right in a JavaScript module. This tells Webpack to include that file in the bundle. Unlike CSS imports, importing a file gives you a string value. This value is the final path you can reference in your code, e.g. as the src
attribute of an image or the href
of a link to a PDF.
To reduce the number of requests to the server, importing images that are less than 10,000 bytes returns a data URI instead of a path. This applies to the following file extensions: bmp, gif, jpg, jpeg, and png. SVG files are excluded due to #1153.
Here is an example:
import React from 'react';
import logo from './logo.png'; // Tell Webpack this JS file uses this image
console.log(logo); // /logo.84287d09.png
function Header() {
// Import result is the URL of your image
return <img src={logo} alt="Logo" />;
}
export default Header;
This ensures that when the project is built, Webpack will correctly move the images into the build folder, and provide us with correct paths.
This works in CSS too:
.Logo {
background-image: url(./logo.png);
}
Webpack finds all relative module references in CSS (they start with ./
) and replaces them with the final paths from the compiled bundle. If you make a typo or accidentally delete an important file, you will see a compilation error, just like when you import a non-existent JavaScript module. The final filenames in the compiled bundle are generated by Webpack from content hashes. If the file content changes in the future, Webpack will give it a different name in production so you don’t need to worry about long-term caching of assets.
Please be advised that this is also a custom feature of Webpack.
It is not required for React but many people enjoy it (and React Native uses a similar mechanism for images).
An alternative way of handling static assets is described in the next section.
public
Folder
Using the Note: this feature is available with
react-scripts@0.5.0
and higher.
Changing the HTML
The public
folder contains the HTML file so you can tweak it, for example, to set the page title.
The <script>
tag with the compiled code will be added to it automatically during the build process.
Adding Assets Outside of the Module System
You can also add other assets to the public
folder.
Note that we normally encourage you to import
assets in JavaScript files instead.
For example, see the sections on adding a stylesheet and adding images and fonts.
This mechanism provides a number of benefits:
- Scripts and stylesheets get minified and bundled together to avoid extra network requests.
- Missing files cause compilation errors instead of 404 errors for your users.
- Result filenames include content hashes so you don’t need to worry about browsers caching their old versions.
However there is an escape hatch that you can use to add an asset outside of the module system.
If you put a file into the public
folder, it will not be processed by Webpack. Instead it will be copied into the build folder untouched. To reference assets in the public
folder, you need to use a special variable called PUBLIC_URL
.
Inside index.html
, you can use it like this:
<link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico" />
Only files inside the public
folder will be accessible by %PUBLIC_URL%
prefix. If you need to use a file from src
or node_modules
, you’ll have to copy it there to explicitly specify your intention to make this file a part of the build.
When you run npm run build
, Create React App will substitute %PUBLIC_URL%
with a correct absolute path so your project works even if you use client-side routing or host it at a non-root URL.
In JavaScript code, you can use process.env.PUBLIC_URL
for similar purposes:
render() {
// Note: this is an escape hatch and should be used sparingly!
// Normally we recommend using `import` for getting asset URLs
// as described in “Adding Images and Fonts” above this section.
return <img src={process.env.PUBLIC_URL + '/img/logo.png'} />;
}
Keep in mind the downsides of this approach:
- None of the files in
public
folder get post-processed or minified. - Missing files will not be called at compilation time, and will cause 404 errors for your users.
- Result filenames won’t include content hashes so you’ll need to add query arguments or rename them every time they change.
public
Folder
When to Use the Normally we recommend importing stylesheets, images, and fonts from JavaScript.
The public
folder is useful as a workaround for a number of less common cases:
- You need a file with a specific name in the build output, such as
manifest.webmanifest
. - You have thousands of images and need to dynamically reference their paths.
- You want to include a small script like
pace.js
outside of the bundled code. - Some library may be incompatible with Webpack and you have no other option but to include it as a
<script>
tag.
Note that if you add a <script>
that declares global variables, you also need to read the next section on using them.
Using Global Variables
When you include a script in the HTML file that defines global variables and try to use one of these variables in the code, the linter will complain because it cannot see the definition of the variable.
You can avoid this by reading the global variable explicitly from the window
object, for example:
const $ = window.$;
This makes it obvious you are using a global variable intentionally rather than because of a typo.
Alternatively, you can force the linter to ignore any line by adding // eslint-disable-line
after it.
Adding Bootstrap
You don’t have to use React Bootstrap together with React but it is a popular library for integrating Bootstrap with React apps. If you need it, you can integrate it with Create React App by following these steps:
Install React Bootstrap and Bootstrap from npm. React Bootstrap does not include Bootstrap CSS so this needs to be installed as well:
npm install --save react-bootstrap bootstrap@3
Alternatively you may use yarn
:
yarn add react-bootstrap bootstrap@3
Import Bootstrap CSS and optionally Bootstrap theme CSS in the beginning of your src/index.js
file:
import 'bootstrap/dist/css/bootstrap.css';
import 'bootstrap/dist/css/bootstrap-theme.css';
// Put any other imports below so that CSS from your
// components takes precedence over default styles.
Import required React Bootstrap components within src/App.js
file or your custom component files:
import { Navbar, Jumbotron, Button } from 'react-bootstrap';
Now you are ready to use the imported React Bootstrap components within your component hierarchy defined in the render method. Here is an example App.js
redone using React Bootstrap.
Using a Custom Theme
Sometimes you might need to tweak the visual styles of Bootstrap (or equivalent package).
We suggest the following approach:
- Create a new package that depends on the package you wish to customize, e.g. Bootstrap.
- Add the necessary build steps to tweak the theme, and publish your package on npm.
- Install your own theme npm package as a dependency of your app.
Here is an example of adding a customized Bootstrap that follows these steps.
Adding Flow
Flow is a static type checker that helps you write code with fewer bugs. Check out this introduction to using static types in JavaScript if you are new to this concept.
Recent versions of Flow work with Create React App projects out of the box.
To add Flow to a Create React App project, follow these steps:
- Run
npm install --save flow-bin
(oryarn add flow-bin
). - Add
"flow": "flow"
to thescripts
section of yourpackage.json
. - Run
npm run flow init
(oryarn flow init
) to create a.flowconfig
file in the root directory. - Add
// @flow
to any files you want to type check (for example, tosrc/App.js
).
Now you can run npm run flow
(or yarn flow
) to check the files for type errors.
You can optionally use an IDE like Nuclide for a better integrated experience.
In the future we plan to integrate it into Create React App even more closely.
To learn more about Flow, check out its documentation.
Adding a Router
Create React App doesn't prescribe a specific routing solution, but React Router is the most popular one.
To add it, run:
npm install --save react-router-dom
Alternatively you may use yarn
:
yarn add react-router-dom
To try it, delete all the code in src/App.js
and replace it with any of the examples on its website. The Basic Example is a good place to get started.
Note that you may need to configure your production server to support client-side routing before deploying your app.
Adding Custom Environment Variables
Note: this feature is available with
react-scripts@0.2.3
and higher.
Your project can consume variables declared in your environment as if they were declared locally in your JS files. By
default you will have NODE_ENV
defined for you, and any other environment variables starting with
REACT_APP_
.
The environment variables are embedded during the build time. Since Create React App produces a static HTML/CSS/JS bundle, it can’t possibly read them at runtime. To read them at runtime, you would need to load HTML into memory on the server and replace placeholders in runtime, just like described here. Alternatively you can rebuild the app on the server anytime you change them.
Note: You must create custom environment variables beginning with
REACT_APP_
. Any other variables exceptNODE_ENV
will be ignored to avoid accidentally exposing a private key on the machine that could have the same name. Changing any environment variables will require you to restart the development server if it is running.
These environment variables will be defined for you on process.env
. For example, having an environment
variable named REACT_APP_SECRET_CODE
will be exposed in your JS as process.env.REACT_APP_SECRET_CODE
.
There is also a special built-in environment variable called NODE_ENV
. You can read it from process.env.NODE_ENV
. When you run npm start
, it is always equal to 'development'
, when you run npm test
it is always equal to 'test'
, and when you run npm run build
to make a production bundle, it is always equal to 'production'
. You cannot override NODE_ENV
manually. This prevents developers from accidentally deploying a slow development build to production.
These environment variables can be useful for displaying information conditionally based on where the project is deployed or consuming sensitive data that lives outside of version control.
First, you need to have environment variables defined. For example, let’s say you wanted to consume a secret defined
in the environment inside a <form>
:
render() {
return (
<div>
<small>You are running this application in <b>{process.env.NODE_ENV}</b> mode.</small>
<form>
<input type="hidden" defaultValue={process.env.REACT_APP_SECRET_CODE} />
</form>
</div>
);
}
During the build, process.env.REACT_APP_SECRET_CODE
will be replaced with the current value of the REACT_APP_SECRET_CODE
environment variable. Remember that the NODE_ENV
variable will be set for you automatically.
When you load the app in the browser and inspect the <input>
, you will see its value set to abcdef
, and the bold text will show the environment provided when using npm start
:
<div>
<small>You are running this application in <b>development</b> mode.</small>
<form>
<input type="hidden" value="abcdef" />
</form>
</div>
The above form is looking for a variable called REACT_APP_SECRET_CODE
from the environment. In order to consume this
value, we need to have it defined in the environment. This can be done using two ways: either in your shell or in
a .env
file. Both of these ways are described in the next few sections.
Having access to the NODE_ENV
is also useful for performing actions conditionally:
if (process.env.NODE_ENV !== 'production') {
analytics.disable();
}
When you compile the app with npm run build
, the minification step will strip out this condition, and the resulting bundle will be smaller.
Referencing Environment Variables in the HTML
Note: this feature is available with
react-scripts@0.9.0
and higher.
You can also access the environment variables starting with REACT_APP_
in the public/index.html
. For example:
<title>%REACT_APP_WEBSITE_NAME%</title>
Note that the caveats from the above section apply:
- Apart from a few built-in variables (
NODE_ENV
andPUBLIC_URL
), variable names must start withREACT_APP_
to work. - The environment variables are injected at build time. If you need to inject them at runtime, follow this approach instead.
Adding Temporary Environment Variables In Your Shell
Defining environment variables can vary between OSes. It’s also important to know that this manner is temporary for the life of the shell session.
Windows (cmd.exe)
set "REACT_APP_SECRET_CODE=abcdef" && npm start
(Note: Quotes around the variable assignment are required to avoid a trailing whitespace.)
Windows (Powershell)
($env:REACT_APP_SECRET_CODE = "abcdef") -and (npm start)
Linux, macOS (Bash)
REACT_APP_SECRET_CODE=abcdef npm start
.env
Adding Development Environment Variables In Note: this feature is available with
react-scripts@0.5.0
and higher.
To define permanent environment variables, create a file called .env
in the root of your project:
REACT_APP_SECRET_CODE=abcdef
Note: You must create custom environment variables beginning with
REACT_APP_
. Any other variables exceptNODE_ENV
will be ignored to avoid accidentally exposing a private key on the machine that could have the same name. Changing any environment variables will require you to restart the development server if it is running.
.env
files should be checked into source control (with the exclusion of .env*.local
).
.env
files can be used?
What other Note: this feature is available with
react-scripts@1.0.0
and higher.
.env
: Default..env.local
: Local overrides. This file is loaded for all environments except test..env.development
,.env.test
,.env.production
: Environment-specific settings..env.development.local
,.env.test.local
,.env.production.local
: Local overrides of environment-specific settings.
Files on the left have more priority than files on the right:
npm start
:.env.development.local
,.env.development
,.env.local
,.env
npm run build
:.env.production.local
,.env.production
,.env.local
,.env
npm test
:.env.test.local
,.env.test
,.env
(note.env.local
is missing)
These variables will act as the defaults if the machine does not explicitly set them.
Please refer to the dotenv documentation for more details.
Note: If you are defining environment variables for development, your CI and/or hosting platform will most likely need these defined as well. Consult their documentation how to do this. For example, see the documentation for Travis CI or Heroku.
.env
Expanding Environment Variables In Note: this feature is available with
react-scripts@1.1.0
and higher.
Expand variables already on your machine for use in your .env
file (using dotenv-expand).
For example, to get the environment variable npm_package_version
:
REACT_APP_VERSION=$npm_package_version
# also works:
# REACT_APP_VERSION=${npm_package_version}
Or expand variables local to the current .env
file:
DOMAIN=www.example.com
REACT_APP_FOO=$DOMAIN/foo
REACT_APP_BAR=$DOMAIN/bar
Can I Use Decorators?
Many popular libraries use decorators in their documentation.
Create React App doesn’t support decorator syntax at the moment because:
- It is an experimental proposal and is subject to change.
- The current specification version is not officially supported by Babel.
- If the specification changes, we won’t be able to write a codemod because we don’t use them internally at Facebook.
However in many cases you can rewrite decorator-based code without decorators just as fine.
Please refer to these two threads for reference:
Create React App will add decorator support when the specification advances to a stable stage.
Fetching Data with AJAX Requests
React doesn't prescribe a specific approach to data fetching, but people commonly use either a library like axios or the fetch()
API provided by the browser. Conveniently, Create React App includes a polyfill for fetch()
so you can use it without worrying about the browser support.
The global fetch
function allows to easily makes AJAX requests. It takes in a URL as an input and returns a Promise
that resolves to a Response
object. You can find more information about fetch
here.
This project also includes a Promise polyfill which provides a full implementation of Promises/A+. A Promise represents the eventual result of an asynchronous operation, you can find more information about Promises here and here. Both axios and fetch()
use Promises under the hood. You can also use the async / await
syntax to reduce the callback nesting.
You can learn more about making AJAX requests from React components in the FAQ entry on the React website.
Integrating with an API Backend
These tutorials will help you to integrate your app with an API backend running on another port,
using fetch()
to access it.
Node
Check out this tutorial. You can find the companion GitHub repository here.
Ruby on Rails
Check out this tutorial. You can find the companion GitHub repository here.
Proxying API Requests in Development
Note: this feature is available with
react-scripts@0.2.3
and higher.
People often serve the front-end React app from the same host and port as their backend implementation.
For example, a production setup might look like this after the app is deployed:
/ - static server returns index.html with React app
/todos - static server returns index.html with React app
/api/todos - server handles any /api/* requests using the backend implementation
Such setup is not required. However, if you do have a setup like this, it is convenient to write requests like fetch('/api/todos')
without worrying about redirecting them to another host or port during development.
To tell the development server to proxy any unknown requests to your API server in development, add a proxy
field to your package.json
, for example:
"proxy": "http://localhost:4000",
This way, when you fetch('/api/todos')
in development, the development server will recognize that it’s not a static asset, and will proxy your request to http://localhost:4000/api/todos
as a fallback. The development server will only attempt to send requests without text/html
in its Accept
header to the proxy.
Conveniently, this avoids CORS issues and error messages like this in development:
Fetch API cannot load http://localhost:4000/api/todos. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:3000' is therefore not allowed access. If an opaque response serves your needs, set the request's mode to 'no-cors' to fetch the resource with CORS disabled.
Keep in mind that proxy
only has effect in development (with npm start
), and it is up to you to ensure that URLs like /api/todos
point to the right thing in production. You don’t have to use the /api
prefix. Any unrecognized request without a text/html
accept header will be redirected to the specified proxy
.
The proxy
option supports HTTP, HTTPS and WebSocket connections.
If the proxy
option is not flexible enough for you, alternatively you can:
- Configure the proxy yourself
- Enable CORS on your server (here’s how to do it for Express).
- Use environment variables to inject the right server host and port into your app.
"Invalid Host Header" Errors After Configuring Proxy
When you enable the proxy
option, you opt into a more strict set of host checks. This is necessary because leaving the backend open to remote hosts makes your computer vulnerable to DNS rebinding attacks. The issue is explained in this article and this issue.
This shouldn’t affect you when developing on localhost
, but if you develop remotely like described here, you will see this error in the browser after enabling the proxy
option:
Invalid Host header
To work around it, you can specify your public development host in a file called .env.development
in the root of your project:
HOST=mypublicdevhost.com
If you restart the development server now and load the app from the specified host, it should work.
If you are still having issues or if you’re using a more exotic environment like a cloud editor, you can bypass the host check completely by adding a line to .env.development.local
. Note that this is dangerous and exposes your machine to remote code execution from malicious websites:
# NOTE: THIS IS DANGEROUS!
# It exposes your machine to attacks from the websites you visit.
DANGEROUSLY_DISABLE_HOST_CHECK=true
We don’t recommend this approach.
Configuring the Proxy Manually
Note: this feature is available with
react-scripts@1.0.0
and higher.
If the proxy
option is not flexible enough for you, you can specify an object in the following form (in package.json
).
You may also specify any configuration value http-proxy-middleware
or http-proxy
supports.
{
// ...
"proxy": {
"/api": {
"target": "<url>",
"ws": true
// ...
}
}
// ...
}
All requests matching this path will be proxies, no exceptions. This includes requests for text/html
, which the standard proxy
option does not proxy.
If you need to specify multiple proxies, you may do so by specifying additional entries. Matches are regular expressions, so that you can use a regexp to match multiple paths.
{
// ...
"proxy": {
// Matches any request starting with /api
"/api": {
"target": "<url_1>",
"ws": true
// ...
},
// Matches any request starting with /foo
"/foo": {
"target": "<url_2>",
"ssl": true,
"pathRewrite": {
"^/foo": "/foo/beta"
}
// ...
},
// Matches /bar/abc.html but not /bar/sub/def.html
"/bar/[^/]*[.]html": {
"target": "<url_3>",
// ...
},
// Matches /baz/abc.html and /baz/sub/def.html
"/baz/.*/.*[.]html": {
"target": "<url_4>"
// ...
}
}
// ...
}
Configuring a WebSocket Proxy
When setting up a WebSocket proxy, there are a some extra considerations to be aware of.
If you’re using a WebSocket engine like Socket.io, you must have a Socket.io server running that you can use as the proxy target. Socket.io will not work with a standard WebSocket server. Specifically, don't expect Socket.io to work with the websocket.org echo test.
There’s some good documentation available for setting up a Socket.io server.
Standard WebSockets will work with a standard WebSocket server as well as the websocket.org echo test. You can use libraries like ws for the server, with native WebSockets in the browser.
Either way, you can proxy WebSocket requests manually in package.json
:
{
// ...
"proxy": {
"/socket": {
// Your compatible WebSocket server
"target": "ws://<socket_url>",
// Tell http-proxy-middleware that this is a WebSocket proxy.
// Also allows you to proxy WebSocket requests without an additional HTTP request
// https://github.com/chimurai/http-proxy-middleware#external-websocket-upgrade
"ws": true
// ...
}
}
// ...
}
Using HTTPS in Development
Note: this feature is available with
react-scripts@0.4.0
and higher.
You may require the dev server to serve pages over HTTPS. One particular case where this could be useful is when using the "proxy" feature to proxy requests to an API server when that API server is itself serving HTTPS.
To do this, set the HTTPS
environment variable to true
, then start the dev server as usual with npm start
:
Windows (cmd.exe)
set HTTPS=true&&npm start
Windows (Powershell)
($env:HTTPS = $true) -and (npm start)
(Note: the lack of whitespace is intentional.)
Linux, macOS (Bash)
HTTPS=true npm start
Note that the server will use a self-signed certificate, so your web browser will almost definitely display a warning upon accessing the page.
<meta>
Tags on the Server
Generating Dynamic Since Create React App doesn’t support server rendering, you might be wondering how to make <meta>
tags dynamic and reflect the current URL. To solve this, we recommend to add placeholders into the HTML, like this:
<!DOCTYPE html>
<html lang="en">
<head>
<meta property="og:title" content="__OG_TITLE__" />
<meta property="og:description" content="__OG_DESCRIPTION__" />
</head>
</html>
Then, on the server, regardless of the backend you use, you can read index.html
into memory and replace __OG_TITLE__
, __OG_DESCRIPTION__
, and any other placeholders with values depending on the current URL. Just make sure to sanitize and escape the interpolated values so that they are safe to embed into HTML!
If you use a Node server, you can even share the route matching logic between the client and the server. However duplicating it also works fine in simple cases.
Pre-Rendering into Static HTML Files
If you’re hosting your build
with a static hosting provider you can use react-snapshot or react-snap to generate HTML pages for each route, or relative link, in your application. These pages will then seamlessly become active, or “hydrated”, when the JavaScript bundle has loaded.
There are also opportunities to use this outside of static hosting, to take the pressure off the server when generating and caching routes.
The primary benefit of pre-rendering is that you get the core content of each page with the HTML payload—regardless of whether or not your JavaScript bundle successfully downloads. It also increases the likelihood that each route of your application will be picked up by search engines.
You can read more about zero-configuration pre-rendering (also called snapshotting) here.
Injecting Data from the Server into the Page
Similarly to the previous section, you can leave some placeholders in the HTML that inject global variables, for example:
<!doctype html>
<html lang="en">
<head>
<script>
window.SERVER_DATA = __SERVER_DATA__;
</script>
Then, on the server, you can replace __SERVER_DATA__
with a JSON of real data right before sending the response. The client code can then read window.SERVER_DATA
to use it. Make sure to sanitize the JSON before sending it to the client as it makes your app vulnerable to XSS attacks.
Running Tests
_ UPDATE THIS _
Note: this feature is available with
react-scripts@0.3.0
and higher.
>Read the migration guide to learn how to enable it in older projects!
Create React App uses Jest as its test runner. To prepare for this integration, we did a major revamp of Jest so if you heard bad things about it years ago, give it another try.
Jest is a Node-based runner. This means that the tests always run in a Node environment and not in a real browser. This lets us enable fast iteration speed and prevent flakiness.
While Jest provides browser globals such as window
thanks to jsdom, they are only approximations of the real browser behavior. Jest is intended to be used for unit tests of your logic and your components rather than the DOM quirks.
We recommend that you use a separate tool for browser end-to-end tests if you need them. They are beyond the scope of Create React App.
Filename Conventions
Jest will look for test files with any of the following popular naming conventions:
- Files with
.js
suffix in__tests__
folders. - Files with
.test.js
suffix. - Files with
.spec.js
suffix.
The .test.js
/ .spec.js
files (or the __tests__
folders) can be located at any depth under the src
top level folder.
We recommend to put the test files (or __tests__
folders) next to the code they are testing so that relative imports appear shorter. For example, if App.test.js
and App.js
are in the same folder, the test just needs to import App from './App'
instead of a long relative path. Colocation also helps find tests more quickly in larger projects.
Command Line Interface
When you run npm test
, Jest will launch in the watch mode. Every time you save a file, it will re-run the tests, just like npm start
recompiles the code.
The watcher includes an interactive command-line interface with the ability to run all tests, or focus on a search pattern. It is designed this way so that you can keep it open and enjoy fast re-runs. You can learn the commands from the “Watch Usage” note that the watcher prints after every run:
Version Control Integration
By default, when you run npm test
, Jest will only run the tests related to files changed since the last commit. This is an optimization designed to make your tests run fast regardless of how many tests you have. However it assumes that you don’t often commit the code that doesn’t pass the tests.
Jest will always explicitly mention that it only ran tests related to the files changed since the last commit. You can also press a
in the watch mode to force Jest to run all tests.
Jest will always run all tests on a continuous integration server or if the project is not inside a Git or Mercurial repository.
Writing Tests
To create tests, add it()
(or test()
) blocks with the name of the test and its code. You may optionally wrap them in describe()
blocks for logical grouping but this is neither required nor recommended.
Jest provides a built-in expect()
global function for making assertions. A basic test could look like this:
import sum from './sum';
it('sums numbers', () => {
expect(sum(1, 2)).toEqual(3);
expect(sum(2, 2)).toEqual(4);
});
All expect()
matchers supported by Jest are extensively documented here.
You can also use jest.fn()
and expect(fn).toBeCalled()
to create “spies” or mock functions.
Testing Components
There is a broad spectrum of component testing techniques. They range from a “smoke test” verifying that a component renders without throwing, to shallow rendering and testing some of the output, to full rendering and testing component lifecycle and state changes.
Different projects choose different testing tradeoffs based on how often components change, and how much logic they contain. If you haven’t decided on a testing strategy yet, we recommend that you start with creating simple smoke tests for your components:
import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';
it('renders without crashing', () => {
const div = document.createElement('div');
ReactDOM.render(<App />, div);
});
This test mounts a component and makes sure that it didn’t throw during rendering. Tests like this provide a lot of value with very little effort so they are great as a starting point, and this is the test you will find in src/App.test.js
.
When you encounter bugs caused by changing components, you will gain a deeper insight into which parts of them are worth testing in your application. This might be a good time to introduce more specific tests asserting specific expected output or behavior.
If you’d like to test components in isolation from the child components they render, we recommend using shallow()
rendering API from Enzyme. To install it, run:
npm install --save enzyme enzyme-adapter-react-16 react-test-renderer
Alternatively you may use yarn
:
yarn add enzyme enzyme-adapter-react-16 react-test-renderer
As of Enzyme 3, you will need to install Enzyme along with an Adapter corresponding to the version of React you are using. (The examples above use the adapter for React 16.)
The adapter will also need to be configured in your global setup file:
src/setupTests.js
import { configure } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';
configure({ adapter: new Adapter() });
Note: Keep in mind that if you decide to "eject" before creating
src/setupTests.js
, the resultingpackage.json
file won't contain any reference to it. Read here to learn how to add this after ejecting.
Now you can write a smoke test with it:
import React from 'react';
import { shallow } from 'enzyme';
import App from './App';
it('renders without crashing', () => {
shallow(<App />);
});
Unlike the previous smoke test using ReactDOM.render()
, this test only renders <App>
and doesn’t go deeper. For example, even if <App>
itself renders a <Button>
that throws, this test will pass. Shallow rendering is great for isolated unit tests, but you may still want to create some full rendering tests to ensure the components integrate correctly. Enzyme supports full rendering with mount()
, and you can also use it for testing state changes and component lifecycle.
You can read the Enzyme documentation for more testing techniques. Enzyme documentation uses Chai and Sinon for assertions but you don’t have to use them because Jest provides built-in expect()
and jest.fn()
for spies.
Here is an example from Enzyme documentation that asserts specific output, rewritten to use Jest matchers:
import React from 'react';
import { shallow } from 'enzyme';
import App from './App';
it('renders welcome message', () => {
const wrapper = shallow(<App />);
const welcome = <h2>Welcome to React</h2>;
// expect(wrapper.contains(welcome)).to.equal(true);
expect(wrapper.contains(welcome)).toEqual(true);
});
All Jest matchers are extensively documented here.
Nevertheless you can use a third-party assertion library like Chai if you want to, as described below.
Additionally, you might find jest-enzyme helpful to simplify your tests with readable matchers. The above contains
code can be written more simply with jest-enzyme.
expect(wrapper).toContainReact(welcome);
To enable this, install jest-enzyme
:
npm install --save jest-enzyme
Alternatively you may use yarn
:
yarn add jest-enzyme
Import it in src/setupTests.js
to make its matchers available in every test:
import 'jest-enzyme';
react-testing-library
Use As an alternative or companion to enzyme
, you may consider using react-testing-library
. react-testing-library
is a library for testing React components in a way that resembles the way the components are used by end users. It is well suited for unit, integration, and end-to-end testing of React components and applications. It works more directly with DOM nodes, and therefore it's recommended to use with jest-dom
for improved assertions.
To install react-testing-library
and jest-dom
, you can run:
npm install --save react-testing-library jest-dom
Alternatively you may use yarn
:
yarn add react-testing-library jest-dom
Similar to enzyme
you can create a src/setupTests.js
file to avoid boilerplate in your test files:
// react-testing-library renders your components to document.body,
// this will ensure they're removed after each test.
import 'react-testing-library/cleanup-after-each';
// this adds jest-dom's custom assertions
import 'jest-dom/extend-expect';
Here's an example of using react-testing-library
and jest-dom
for testing that the <App />
component renders "Welcome to React".
import React from 'react';
import { render } from 'react-testing-library';
import App from './App';
it('renders welcome message', () => {
const { getByText } = render(<App />);
expect(getByText('Welcome to React')).toBeInTheDOM();
});
Learn more about the utilities provided by react-testing-library
to facilitate testing asynchronous interactions as well as selecting form elements from the react-testing-library
documentation and examples.
Using Third Party Assertion Libraries
We recommend that you use expect()
for assertions and jest.fn()
for spies. If you are having issues with them please file those against Jest, and we’ll fix them. We intend to keep making them better for React, supporting, for example, pretty-printing React elements as JSX.
However, if you are used to other libraries, such as Chai and Sinon, or if you have existing code using them that you’d like to port over, you can import them normally like this:
import sinon from 'sinon';
import { expect } from 'chai';
and then use them in your tests like you normally do.
Initializing Test Environment
Note: this feature is available with
react-scripts@0.4.0
and higher.
If your app uses a browser API that you need to mock in your tests or if you just need a global setup before running your tests, add a src/setupTests.js
to your project. It will be automatically executed before running your tests.
For example:
src/setupTests.js
const localStorageMock = {
getItem: jest.fn(),
setItem: jest.fn(),
clear: jest.fn(),
};
global.localStorage = localStorageMock;
Note: Keep in mind that if you decide to "eject" before creating
src/setupTests.js
, the resultingpackage.json
file won't contain any reference to it, so you should manually create the propertysetupTestFrameworkScriptFile
in the configuration for Jest, something like the following:
"jest": { // ... "setupTestFrameworkScriptFile": "<rootDir>/src/setupTests.js" }
Focusing and Excluding Tests
You can replace it()
with xit()
to temporarily exclude a test from being executed.
Similarly, fit()
lets you focus on a specific test without running any other tests.
Coverage Reporting
Jest has an integrated coverage reporter that works well with ES6 and requires no configuration.
Run npm test -- --coverage
(note extra --
in the middle) to include a coverage report like this:
Note that tests run much slower with coverage so it is recommended to run it separately from your normal workflow.
Configuration
The default Jest coverage configuration can be overriden by adding any of the following supported keys to a Jest config in your package.json.
Supported overrides:
Example package.json:
{
"name": "your-package",
"jest": {
"collectCoverageFrom": [
"src/**/*.{js,jsx}",
"!<rootDir>/node_modules/",
"!<rootDir>/path/to/dir/"
],
"coverageThreshold": {
"global": {
"branches": 90,
"functions": 90,
"lines": 90,
"statements": 90
}
},
"coverageReporters": ["text"],
"snapshotSerializers": ["my-serializer-module"]
}
}
Continuous Integration
By default npm test
runs the watcher with interactive CLI. However, you can force it to run tests once and finish the process by setting an environment variable called CI
.
When creating a build of your application with npm run build
linter warnings are not checked by default. Like npm test
, you can force the build to perform a linter warning check by setting the environment variable CI
. If any warnings are encountered then the build fails.
Popular CI servers already set the environment variable CI
by default but you can do this yourself too:
On CI servers
Travis CI
- Following the Travis Getting started guide for syncing your GitHub repository with Travis. You may need to initialize some settings manually in your profile page.
- Add a
.travis.yml
file to your git repository.
language: node_js
node_js:
- 6
cache:
directories:
- node_modules
script:
- npm run build
- npm test
- Trigger your first build with a git push.
- Customize your Travis CI Build if needed.
CircleCI
Follow this article to set up CircleCI with a Create React App project.
On your own environment
Windows (cmd.exe)
set CI=true&&npm test
set CI=true&&npm run build
(Note: the lack of whitespace is intentional.)
Windows (Powershell)
($env:CI = $true) -and (npm te